
CPUville Single-board Z80 Computer Bus Display
Instruction Manual

“The Slow Board”

by Donn Stewart
©2019

1

Table of Contents
Introduction..3
Building the Single-board Bus Display...4

Soldering tips...4
Component placement...5
Testing the bus display board..8

Using the bus display...8
The displays...10
Using the slow clock...11
Switching clocks while running..12
Using the single-step clock..12
Using the v.15 ROM with the bus display...13

Schematics and explanations..15
System connector..16
Clocks and reset...17
Display buffer and LEDs...18
Port address decoder..18
Input ports..19
Output ports...20

Single-board bus display parts organizer...21
Single-board bus display parts list...22
v.15 ROM listing..23

2

Introduction

This is an accessory board for the CPUville Z80 Single-board computer. It provides a display of the
address, data, and control system buses. It also has a slow clock of about 8 cycles per second, allowing
you to examine the activity on these buses. This helps you understand the workings of this computer
system, and also can be used to analyze hardware problems should they arise. In addition to the slow
clock, there is a single-step clock. This is a bounceless toggle that allows you to provide single clock
edges to the Z80, for an even closer look at the system activity on the buses.

Another feature of this kit is the addition of simple input and output ports (DIP switches and LEDs).
These allow you to experiment with code in a way that is more straightforward than using the keyboard
and display. The slow clock and simple ports make the Single-board computer system similar to the
CPUville Original Z80 computer with its bus display, yet with the Single-board’s 64K memory, serial
interface and disk drive interface all operational.

Thank you for buying a CPUville kit. I hope you enjoy building and using it. If you have any questions,
please contact me.

--Donn Stewart

3

Building the Single-board Bus Display

Soldering tips
For a full explanation of soldering tips, see the CPUville Building and Soldering Tips document,
available on the CPUville website kit instructions page.

There are two main types of soldering errors. The first is failing to make a good connection to the pads
of the ground zones:

These pads wick away the soldering iron heat, and may require higher wattage and/or more time to
solder well.

The other main error is folding a pin under, but soldering the empty hole anyway, not realizing there is
no pin sticking through:

4

Both these errors can be corrected by careful attention during soldering, and by careful inspection of
the board after it is finished.

Component placement
I usually place and solder the flattest components first, with the circuit board upside down sitting on the
table top. So, I place them in this order: resistors, pushbuttons, resistor networks, oscillator, IC sockets,
LEDs, ceramic capacitors, switches, and electrolytic capacitors.

Some of the components need to be soldered in the correct orientation. The LEDs go in with the short
lead (cathode) inserted into the hole marked “K”:

5

The plastic rim of the LED also has a flat edge on the cathode side.

The resistor networks go in with the marked pin (pin 1) to the left, into the hole with the square drawn
around it:

The oscillator goes in with the sharp corner at the lower left:

6

The electrolytic capacitors go in with the negative lead to the right:

The resistors, pushbutton switches, and ceramic capacitors do not need to be oriented. The DIP
switches should be place so that “On” is up. The IC sockets do not need to be oriented, but they have a
small cut-out on one end that can be placed on the left to match the cut-out on the ICs.

Once the components and sockets have been soldered in, carefully inspect each solder joint to make
sure there are no solder bridges or cold joints, and that all the connections have a pin present. Use
magnification to inspect the joints if possible. Note especially the condition of the solder connections to

7

the ground plane zone. These require more heat and/or time to make, and are the most common source
of soldering errors. Finally, brush off the back of the board to get rid of loose debris.

Plug the integrated circuits into their sockets. They need to be oriented with the small cut-out to the
left:

Take extra care not to fold any pins under when plugging in the ICs. After each one is plugged in, look
carefully down the length of the IC to be sure no pins are folded under, or out to the side.

Testing the bus display board
Once all the ICs have been inserted, and you are confident no pins are folded under or outward, it is
time to test the board. The bus display LEDs are configured so that the buffer ICs will sink current
through them, causing the LEDs to light up. The buffer ICs are inverting buffers. That is, when the
input of a signal is low, the buffer output is high, and the LED will not light. When the input is high,
the buffer output is low, and the buffer will “sink” current through the LED, and it will light.
Unconnected buffer inputs usually assume a high state, so if you connect power to the board (+5V to
pin 1 and ground to pin 40 on the bus display connector), leaving the signal pins unconnected, the
LEDs will light. This is the easiest way to test the board. You can further test the board by grounding in
turn the signal pins. If you ground a signal, its corresponding LED will go off.

You can also do a quick check of the clock and reset circuits. With the fast clock selected, the Clock
LED will be half-on, or dimly lit. With the slow clock selected, it will flash 8 to 10 times a second.
With the single-step clock selected, it will turn on and off in response to pushing one or the other of the
single-step switches. Also, if the Reset switch is on, pressing the Reset button will cause the Reset LED
to go off, since Reset is an active-low signal.

There is no simple way to test the input/output ports without connecting the board to a working
computer system.

8

Using the bus display
I assume you have a working Single-board Z80 computer system. Before you connect the bus display
board, remove the external clock and reset jumpers from the computer board, because you will be using
the clock and reset circuits on the bus display board.

With the power off, connect the bus display to the computer board using the 40-conductor connector.
Make sure you have the connector plug holes lined up properly with the header pins. It is possible to
place it off-center so that half the pins are not connected. Place the bus display board on top of the
standoffs, and secure the board with the small standoff screws or nuts:

Connect the computer to the serial interface cable and activate your terminal emulation program as
usual. Before you power-up the computer, select the fast clock by turning the fast clock switch on,
leaving the slow clock and single-step switches off. Turn the reset switch on. Then power-up the
computer.

You should see the ROM greeting message and the monitor prompt on the terminal display screen as
usual. In addition, many of the bus display LEDs should light. You might notice some are bright, and
others are dim. This is because some signals are cycling, and depending on the relative time spent in
the high or low condition, the LEDs will vary in brightness. Pressing the Reset pushbutton will reset
the computer, and cause the monitor greeting message and prompt to reappear.

Do a memory dump operation. You will see the LEDs flickering as the processor performs this action.
Of course, the processor is going very fast, so it is not possible to see any detail in the bus activity.

Now we will test the simple input and output ports. Use the monitor load command to load the
following bytes into RAM at location 0800h:

9

DB 04 D3 04 DB 05 D3 05 C3 00 08

These are the machine code bytes of a simple port reflector program. The assembly language for this
program is:

Port_reflector in a,(4) ;Simple program to test ports
out (4),a
in a,(5)
out (5),a
jp Port_reflector

Once you have entered the machine code, run the program using the monitor run command, with the
target address 0800h. Now, turn on some of the input port switches. The corresponding output port’s
LEDs should light. Turn the switches off, and the LEDs should turn off. This shows that the computer
is reading and writing the ports correctly.

The displays
The displays show the system address bus, some control signals, and the data bus.

The data on the address bus is an output from the Z80. This address tells the system ROM, RAM or
input/output ports which address location is to be written or read by the processor. For memory reads
and writes, the full 16-bits of the address is used. For port reads and writes, only the lower 8-bits is
used. One odd characteristic of the address bus is that during port operations, the port data (either being
read or written) will appear on the upper 8-bits of the address bus. This is a non-documented “feature”
of the Z80. Since the upper portion of the address bus is not used to select a port address, the presence
of the port data there does not interfere with the port read or write function. I am not aware of any use
for this, and it seems to have been deliberately made this way. Of interest, some manufacturer’s Z80s
do not do this.

The Z80 has many control inputs and outputs. I have selected a subset of these to put on the display.
The Reset and Clock are inputs to the Z80, and the M1 (machine 1), I/O Req (input-output request),
Mem Req (memory request), Write and Read signals are outputs from the Z80. The Reset LED shows
the state of the CPU Reset input. When low, the Z80 is held in the reset condition. When Reset is
released, and the Reset LED is on, the Z80 is in the run condition. The Clock LED displays the clock
pulses that drive the Z80. The other Z80 outputs on the display are all active-low, that is, when
asserted, the LED will be off. For example, if the Z80 is requesting a memory read, the Mem Req and
Read LEDs will be off. The M1 LED shows when the Z80 is executing a “machine 1” cycle, which is
an instruction fetch. On the slow or single-step clocks, by watching for M1, you can tell when a
machine cycle is starting.

The data bus is bi-directional. If the processor is reading data, the bus is operating in one direction, and
when writing data, in the other. The data is displayed in both cases, but the direction has to be inferred
by looking at the control outputs. Since the data bus is bi-directional, all devices that place data on it

10

must have “three-state” connections. The “third state” is a high-impedance state, like a disconnected
wire. When not selected, the writing device must be in this third state. There are times that all devices
that might write to the bus are in the third state. At these times, the display will show all the data LEDs
on. You will notice this when you run the computer on the slow clock, that the default data bus display
seems to be “all-on”. This is because the inputs to the bus display buffers that drive the LEDs, like most
TTL inputs, will assume the high state if not connected. The third state is like being disconnected, so
the inputs will assume the high state, and the LEDs will all light when no data is being written to the
bus. Only when data is being written to the bus will some LEDs be off.

Using the slow clock
To use the slow clock, turn off the fast clock switch, and turn on the slow clock switch. You should see
the Clock LED blinking about 8 times a second. Press and hold the Reset switch for a few seconds,
then release it. The computer is now running the system monitor, but very slowly. After a few minutes
you will see the monitor greeting message begin to appear on the terminal display.

Using the slow clock, it is possible to see in detail the activity in the microcomputer system. The
control signals are active-low. So, for example, when the processor is doing a memory read, the Mem
Req and Read LEDs will go off. Similarly, when the processor is writing to an output port, the I-O Req
and Write LEDs will go off. You can tell a lot about what is happening by looking at the LEDs, but 8
cycles per second is still pretty fast for a human brain. To see maximum detail, you can take a video of
the display, and look at the video frame-by-frame to see and understand all the activity. The following
paragraphs explain some of what you will see.

The Z80 has a special M1 signal. This LED will go off when the processor is executing an M1
(“machine 1”) cycle. This is the first clock cycle in an instruction execution. The processor will display
the address of the instruction to be read on the address bus, and set the Mem Req and Read signals low.
This will cause the memory to place the 8-bit instruction opcode on the data bus. M1 lasts two clock
cycles. At the end of the M1 cycle, the instruction opcode is placed into the instruction register inside
the Z80.

The two cycles after M1 allows the processor time to interpret the opcode. During these cycles, the Z80
will perform a memory refresh. This is for systems with dynamic RAM. The Single-board Z80
computer uses static RAM, so the refresh is not needed, but the Z80 will perform it anyway. Since it
performs the refresh during instruction interpretation, there is no performance penalty. During the
refresh cycle, the Mem Req signal is activated (the Mem Req LED will go off) but neither the Read nor
Write signals are activated. Systems with dynamic memory use the Mem Req signal, coupled with the
Z80 Refresh signal (not shown on the display), and a refresh row address placed on the address bus to
refresh their memory.

After the M1 and refresh cycles are finished, the processor will perform the instruction. There are more
than one hundred instructions used by the Z80, so it is beyond the scope of this instruction manual to

11

explain what is seen on the bus display. However, if you refer to the Z80 datasheet for your particular
type of Z80, you will be able to understand a lot about how the Z80 interacts with its computer system.

We have been using the slow clock to run the system monitor. But what if you want to use the slow
clock to examine the bus activity while running your own program? There are two ways this can be
done. The first way is to enter the program in memory while on the fast clock, switch to the slow clock,
and reset the computer. The reset will not affect the program in RAM. After the reset the monitor
program will start running, and eventually get to the command prompt. This will take several minutes.
At the prompt, you can enter commands one character at a time. So, if you have entered your program
at location 0800h, switched to the slow clock and reset the computer, when it gets to the command
prompt you can enter the run command. You need to press “r”, then wait until the “r” is displayed.
Then count to 10. Then press “u”, and so on. When you have finished entering “run”, press Enter. Now
you will have to wait a long time for the run command to print its message, and get to the point where
you can enter the address. You enter the address one character at a time, as you did for the “run”
command, then hit Enter. Now you have to wait another few minutes for the run command to convert
the address character string into the binary address that the Z80 will jump to. Finally, your program will
begin to run. You can tell it is running when you see the address of your program being displayed
frequently on the address display. For the address 0800h, you will see the A11 LED lighting. All this
will take 10 to 15 minutes.

Switching clocks while running
The other way to run your own program on the slow clock is to switch clocks while running. With most
Z80s I have tested this works about half the time you try it. The other half, the Z80 is upset by the
change and will freeze or jump to non-program memory locations. But, it is probably faster to switch
clocks while running than to enter monitor commands on the slow clock, as outlined above. Switching
clocks while running will not harm the Z80 or the hardware of your computer system.

The technique I have used that works the best is to change the clock switches using a pencil or a
ballpoint pen with the point retracted. Using my finger for some reason decreases my chance of a
successful switch.

Start by entering your program using the load command with the fast clock as before, then use the
run command on the fast clock to start your program. Once you see your program is running, turn off
the fast clock, then quickly turn on the slow clock. If you see cycling on the buses on the slow clock,
you probably have had a successful switch. You can be sure by looking at the addresses being
displayed, and at the control LEDs. For example, if you successfully switch clocks while running the
port reflector program entered at address 0800h as shown above, you will see the A11 address LED
lighting, and the I/O Req LED going off frequently. Place data on the input port switches, and after a
short time, the data will be displayed on the output port LEDs.

If the clock switch upsets the Z80, the display will freeze or show that the Z80 is somewhere else in the
address space, not running your program. In that case, switch to the fast clock, reset the computer, and

12

enter the run command again. (Even if the Z80 goes crazy during the attempt to switch the clocks it is
probable that the program in RAM is still there, so you will not need to reload your program). Then try
the clock switch again.

Using the single-step clock
The reason clock switching is not always successful is that most Z80s do not tolerate the absence of
clock input, especially prolonged periods of a low clock signal. I am not sure why this is the case. The
datasheets for many Z80s will show the minimum clock frequency to be “D.C.” (direct current,
meaning the Z80 should remain stable without receiving clock edges), but in practice they do not
remain stable for long. You can see this if you try to single-step the Z80 you have. Select the single-step
clock, then hold the Reset pushbutton while cycling the clock with the single-step pushbuttons. Once
all the address and data LEDs have lit you know the processor has been reset. Now release the Reset
pushbutton. If you continue to cycle quickly, at about 2 clicks per second, the processor will run.
However, if you slow down or stop single-stepping, the display might not hold steady. Some address
LEDs will light even when you are not stepping the clock. The control LEDs and data LEDs may also
change. If you try to cycle again, the Z80 will not respond. By experimentation, it seems that many, but
not all, Z80s will remain stable if you stop cycling with the clock level high. But if the clock input is
low, the lights will begin to change, and the Z80 will be locked up. As long as you are careful to stop
single-stepping with the clock high, you might be able to keep going. Single-stepping allows you to
examine in detail the activity on the system buses one upgoing clock edge at a time. But if you are
curious about what happens on a downgoing edge, the Z80 will probably not tolerate this.

There are exceptions to this. Some Z80s are capable of full single-stepping, and remain stable with the
clock signal held high or low. The two I have tested are Zilog part number Z84C0006PEG and Toshiba
part number TMPZ84C00AP-6. These are more expensive than the Z80s I provide with the kit, and to
keep the kit price as low as possible I will continue to provide the less expensive processors. However,
if there is strong interest in single-stepping with a processor that can be stopped with the clock low, I
will offer a fully single-step capable Z80 as an option with the kit.

One advantage of having a fully single-step capable Z80 is that clock switching is much more reliable.
Since the processor will remain stable without clock input, you can turn off the slow clock (leaving the
processor with no clock input at all) and it will remain stable, waiting for you to turn on the slow clock
or the single-step clock.

Using the v.15 ROM with the bus display
I have coded a new ROM for use with the Single-board Z80 computer with the bus display attached
that combines features of the v.7 ROM shipped with the Original Z80 computer, and the v.8 ROM
shipped with the single-board computer. Since it has features of both, I designated it v.15. A listing of
this ROM can be found toward the end of this manual.

13

This ROM only works in a system with the bus display attached. At power up or reset, instead of
jumping right to the system monitor program like the v.8 ROM, it reads an address from the input port
switches and jumps to that address, like the v.7 ROM would do. This allowed me to put some small
demo programs in the ROM that will run immediately after power up or reset, if the correct address is
on the input port switches. This avoids the problem of loading demo programs using the system
monitor and then trying to switch the clock speed while the system is running, as mentioned in the
above section “Switching clocks while running”. You can simply put the address on the switches, set
the clock to the speed you want, and press reset. The demo program will start to run after a few cycles
(the instructions to read the switches and jump).

In addition to the code to read an address from the switches and jump to it, and the demo programs, the
v.15 ROM has a full system monitor program that can perform all the functions of the monitor program
in the v.8 ROM. The only difference is that I shortened some of the messages to make a little more
room for the extra code of the demo programs. So, you can use the dump, load, run, bload and
cpm commands just like the v.8 ROM. To enter the system monitor in the v.15 ROM at startup or reset,
the monitor cold start address 0x0494 must be on the port switches.

These are the three demo programs:

Port reflector, address 0x0007 (binary 0000 0000 0000 0111)

This program gets a data byte from each input port, and displays it on each output port. On the slow
clock you will note the use of the I/O_Req signal when the ports are read from or written to. Also, you
might note that the data from every port read and write instruction appears on the upper 8 bits of the
address bus in Zilog brand Z80s. This is an undocumented “feature” that does not interfere with the
function of the port instructions, since the addresses of the ports are only 8-bits.

Simple counter, address 0x0012 (binary 0000 0000 0001 0010)

In this program, the Z80 increments the value in the A register and displays the result on output port 4.
The output port display will go from 0 to 255 (binary 0000 0000 to 1111 1111) over and over again. It
is useful to watch how the CPU operates the bus signals when the slow clock is on. With the fast clock
the bus display and outputs are a blur.

Count to a million, address 0x001a (binary 0000 0000 0001 1010)

This program counts down 16 times by decrementing the A register, then increments the 16-bit register
pair HL and displays the result on the output ports 5 and 4. The result is 16 x 65, 536 = 1,048,576
operations for a full cycling of the output. It is impressive to run this program with the slow clock,
which seems to take forever to increment the output once, and compare that to the fast clock at 1.8432
MHz, which goes through the whole count in a second or two. This gives a visible demonstration of the
speed of the computer.

Here is a list of the programs and the hex addresses for reference:

Port_reflector: 0007

14

Simple_Counter: 0012

Count_to_a_million: 001a

monitor_cold_start: 0494

monitor_warm_start: 04A0

The monitor warm start address is to be used to return to the ROM system monitor from any programs
the user may have written, so that the computer will not need to be reset when the program is finished.

15

Schematics and explanations
Here is the whole schematic. Increase the view magnification to see the details. You can download the
full resolution schematic from the CPUville website.

I have broken out the sections of the circuit and given explanations below.

16

System connector

This is the bus display connector to the computer board. The Reset and Clock signals are inputs from
the bus display to the computer board. The other signals are outputs from the computer board to the bus
display. Please note that the computer system connector has other active signals that are not used by the
bus display, here shown with “no connect” symbols (the blue x’s). These signals are shown on the
Single-board Z80 computer schematic, available on the CPUville website.

17

Clocks and reset
The fast clock (OSC) is a crystal square-wave oscillator that produces for this computer a 1.8432 MHz
output. The slow clock is a resistor-capacitor oscillator connected to inverters that produce an
approximately 8 Hz square-wave output. The single-step clock is a bounceless toggle switch that
produces an up-down or down-up transition depending on which button is pressed. The reset circuit has
a capacitor-resistor timer that holds the system in reset for about one second after power is applied,
then releases. The reset pushbutton allows for resetting without disconnecting and reconnecting the
power.

Display buffer and LEDs

This shows how the display LEDs are driven. Only the data bus display buffer and LEDs are shown, as
an example, but the address and control displays use the same kind of circuit. The 74LS240 is an
inverting buffer. The LEDs are arranged to that the buffer outputs will “sink” current when low, causing
the LEDs to light. So, if a buffer input is high, the output will be low, and the LED will light because
current can flow through the LED. If the input is low, the output will be high. In that case there is no
voltage difference across the LED, so no current will flow, and the LED will be off.

18

Port address decoder

The Single-board Z80 computer decodes ports 0 to 3, and 8 to 15 for its own use. Port values above 15
will “wrap around” and select these same ports again. However, ports 4 to 7 are not decoded on the
computer board, allowing them to be used on an accessory add-on board, like this bus display board.
This decoder is configured to select ports 4 and 5.

It selects one of eight outputs (causes it to go low) depending on the address input on A0 to A2.
However, the decoder has three enable inputs, E1 to E3. The E3 input (active-high) is tied to VCC. The
E1 (active-low) is connected to the I/O Req signal (active-low) and, E2 is connected to A3. The
decoder outputs will only be asserted when there is a port request (E1 is low), and when A3 is 0, which
is the case when requesting ports with addresses below 8.

Input ports

19

The input ports are non-inverting buffers with inputs controlled by the DIP switches, and the outputs
connected to the data bus. The outputs are three-state, and will only be active when the output enable
inputs Ea and Eb (active-low) are both asserted. This will happen if the port select (from the port
decoder) and read signals are asserted together. The output port write signals go off the page to the
output ports (see below).

20

Output ports

The output ports are transparent latches. The latch data inputs are connected to the data bus, and the
outputs drive the LEDs. The write_port signals (active-high) from the input port schematic above are
connected to the latch enable inputs. When the proper write_port signal is asserted, this will cause
whatever data is on the data bus to be written into the latches, and the data will be displayed on the
corresponding LEDs. When the latch enable is de-asserted, the data held in the latches will continued to
be displayed.

21

Single-board bus display parts organizer
Capacitor, 0.01 uF

2

1.8432 MHz oscillator

1

4-position DIP switch

1

8-position DIP switch

2

74LS00

1

74LS04

1

74LS138

1

74LS14

1

74LS240

4

74LS244

2

74LS32

1

74LS373

2

40-pin header

1

Standoff, 0.25 inch M/F

4

Resistor network, 1K x 9

2

14-pin socket

4

16-pin socket

1

20-pin socket

8

Pushbutton

3

Resistor, 470 ohm
Yellow-Violet-Brown

47

Resistor, 2.2K
Red-Red-Red

1

Capacitor, 22 uF

2

LED

47

Resistor, 1K
Brown-Black-Red

2

Resistor, 100K
Brown-Black-Yellow

1

22

Single-board bus display parts list

40-conductor connector

23

Part PCB Reference Number per unit Jameco Part no.
Capacitor, 0.01 uF C3,C4 2 15229
1.8432 MHz oscillator U2 1 27879
4-position DIP switches U7 1 38820
8-position DIP switches SW4,SW5 2 38842
74LS00 U5 1 46252
74LS04 U3 1 46316
74LS138 U13 1 46607
74LS14 U1 1 46640
74LS240 U15,U14,U12,U6 4 47141
74LS244 U8,U9 2 47183
74LS32 U4 1 47466
74LS373 U11,U10 2 47600
40-pin header P1 1 53532
Standoff 0.25 inch M/F 4 77586
Resistor network, 1K x 9 RN1,RN2 2 97877
14-pin socket 4 112214
16-pin socket 1 112222
20-pin socket 8 112248
Pushbutton SW1,SW2,SW3 3 122973
Resistor, 470 ohm R5 – R51 47 690785
Resistor, 1K R2,R3 2 690865
Resistor, 2.2K R4 1 690945
Resistor, 100K R1 1 691340
Capacitor, 22 uF C1,C2 2 1946295
LED D1 – D47 47 2081932

v.15 ROM listing
File 2K_ROM_15.asm
0000 ;ROM monitor for single-board Z80 computer with bus display.
0000 ;Mixed features of v.7 and v.8 ROMs
0000 ;ROM has simple programs to run on slow clock, with input switches and output LEDs
0000 ;Also has monitor program with command to run CP/M
0000 ;Jumps to address on input switches at power-on or reset
0000 ;
0000 org 00000h
0000 db 04 in a,(4) ;Get address from input ports
0002 6f ld l,a
0003 db 05 in a,(5)
0005 67 ld h,a
0006 e9 jp (hl) ;Jump to the address
0007 db 04 Port_Reflector: in a,(4) ;Simple program to test ports
0009 d3 04 out (4),a
000b db 05 in a,(5)
000d d3 05 out (5),a
000f c3 07 00 jp Port_Reflector
0012 3e 00 Simple_Counter: ld a,000h ;One-byte counter for slow clock
0014 d3 04 Loop_1: out (4),a
0016 3c inc a
0017 c3 14 00 jp Loop_1
001a 2e 00 Count_to_a_million: ld l,000h ;Two-byte (16-bit) counter
001c 26 00 ld h,000h ;Clear registers
001e 3e 10 Loop_2: ld a,010h ;Count 16 times, then
0020 3d Loop_3: dec a
0021 c2 20 00 jp nz,Loop_3
0024 23 inc hl ;increment the 16-bit number
0025 7d ld a,l
0026 d3 04 out (4),a ;Output the 16-bit number
0028 7c ld a,h
0029 d3 05 out (5),a
002b c3 1e 00 jp Loop_2 ;Do it again
002e
002e ;
002e ;
002e ;Subroutines for the monitor use these RAM variables:

24

002e current_location: equ 0xdb00 ;word variable in RAM
002e line_count: equ 0xdb02 ;byte variable in RAM
002e byte_count: equ 0xdb03 ;byte variable in RAM
002e value_pointer: equ 0xdb04 ;word variable in RAM
002e current_value: equ 0xdb06 ;word variable in RAM
002e buffer: equ 0xdb08 ;buffer in RAM -- up to stack area
002e
002e ;Need to have stack in upper RAM, but not in area of CP/M or RAM monitor.
002e ROM_monitor_stack: equ 0xdbff ;upper TPA in RAM, below RAM monitor
002e
002e ;Subroutine to initialize serial port UART
002e ;Needs to be called only once after computer comes out of reset.
002e ;If called while port is active will cause port to fail.
002e ;16x = 9600 baud
002e 3e 4e initialize_port: ld a,04eh ;1 stop bit, no parity, 8-bit char, 16x baud
0030 d3 03 out (3),a ;write to control port
0032 3e 37 ld a,037h ;enable receive and transmit
0034 d3 03 out (3),a ;write to control port
0036 c9 ret
0037 ;
0037 ;Puts a single char (byte value) on serial output
0037 ;Call with char to send in A register. Uses B register
0037 47 write_char: ld b,a ;store char
0038 db 03 write_char_loop: in a,(3) ;check if OK to send
003a e6 01 and 001h ;check TxRDY bit
003c ca 38 00 jp z,write_char_loop ;loop if not set
003f 78 ld a,b ;get char back
0040 d3 02 out (2),a ;send to output
0042 c9 ret ;returns with char in a
0043 ;
0043 ;Subroutine to write a zero-terminated string to serial output
0043 ;Pass address of string in HL register
0043 ;No error checking
0043 db 03 write_string: in a,(3) ;read status
0045 e6 01 and 001h ;check TxRDY bit
0047 ca 43 00 jp z,write_string ;loop if not set
004a 7e ld a,(hl) ;get char from string
004b a7 and a ;check if 0
004c c8 ret z ;yes, finished
004d d3 02 out (2),a ;no, write char to output

25

004f 23 inc hl ;next char in string
0050 c3 43 00 jp write_string ;start over
0053 ;
0053 ;Binary loader. Receive a binary file, place in memory.
0053 ;Address of load passed in HL, length of load (= file length) in BC
0053 db 03 bload: in a,(3) ;get status
0055 e6 02 and 002h ;check RxRDY bit
0057 ca 53 00 jp z,bload ;not ready, loop
005a db 02 in a,(2)
005c 77 ld (hl),a
005d 23 inc hl
005e 0b dec bc ;byte counter
005f 78 ld a,b ;need to test BC this way because
0060 b1 or c ;dec rp instruction does not change flags
0061 c2 53 00 jp nz,bload
0064 c9 ret
0065 ;
0065 ;Binary dump to port. Send a stream of binary data from memory to serial output
0065 ;Address of dump passed in HL, length of dump in BC
0065 db 03 bdump: in a,(3) ;get status
0067 e6 01 and 001h ;check TxRDY bit
0069 ca 65 00 jp z,bdump ;not ready, loop
006c 7e ld a,(hl)
006d d3 02 out (2),a
006f 23 inc hl
0070 0b dec bc
0071 78 ld a,b ;need to test this way because
0072 b1 or c ;dec rp instruction does not change flags
0073 c2 65 00 jp nz,bdump
0076 c9 ret
0077 ;
0077 ;Subroutine to get a string from serial input, place in buffer.
0077 ;Buffer address passed in HL reg.
0077 ;Uses A,BC,DE,HL registers (including calls to other subroutines).
0077 ;Line entry ends by hitting return key. Return char not included in string (replaced by zero).
0077 ;Backspace editing OK. No error checking.
0077 ;
0077 0e 00 get_line: ld c,000h ;line position
0079 7c ld a,h ;put original buffer address in de
007a 57 ld d,a ;after this don't need to preserve hl

26

007b 7d ld a,l ;subroutines called don't use de
007c 5f ld e,a
007d db 03 get_line_next_char: in a,(3) ;get status
007f e6 02 and 002h ;check RxRDY bit
0081 ca 7d 00 jp z,get_line_next_char ;not ready, loop
0084 db 02 in a,(2) ;get char
0086 fe 0d cp 00dh ;check if return
0088 c8 ret z ;yes, normal exit
0089 fe 7f cp 07fh ;check if backspace (VT102 keys)
008b ca 9f 00 jp z,get_line_backspace ;yes, jump to backspace routine
008e fe 08 cp 008h ;check if backspace (ANSI keys)
0090 ca 9f 00 jp z,get_line_backspace ;yes, jump to backspace
0093 cd 37 00 call write_char ;put char on screen
0096 12 ld (de),a ;store char in buffer
0097 13 inc de ;point to next space in buffer
0098 0c inc c ;inc counter
0099 3e 00 ld a,000h
009b 12 ld (de),a ;leaves a zero-terminated string in buffer
009c c3 7d 00 jp get_line_next_char
009f 79 get_line_backspace: ld a,c ;check current position in line
00a0 fe 00 cp 000h ;at beginning of line?
00a2 ca 7d 00 jp z,get_line_next_char ;yes, ignore backspace, get next char
00a5 1b dec de ;no, erase char from buffer
00a6 0d dec c ;back up one
00a7 3e 00 ld a,000h ;put a zero in buffer where the last char was
00a9 12 ld (de),a
00aa 21 b5 03 ld hl,erase_char_string ;ANSI sequence to delete one char from line
00ad cd 43 00 call write_string ;transmits sequence to backspace and erase char
00b0 c3 7d 00 jp get_line_next_char
00b3 ;
00b3 ;Creates a two-char hex string from the byte value passed in register A
00b3 ;Location to place string passed in HL
00b3 ;String is zero-terminated, stored in 3 locations starting at HL
00b3 ;Also uses registers b,d, and e
00b3 47 byte_to_hex_string: ld b,a ;store original byte
00b4 cb 3f srl a ;shift right 4 times, putting
00b6 cb 3f srl a ;high nybble in low-nybble spot
00b8 cb 3f srl a ;and zeros in high-nybble spot
00ba cb 3f srl a
00bc 16 00 ld d,000h ;prepare for 16-bit addition

27

00be 5f ld e,a ;de contains offset
00bf e5 push hl ;temporarily store string target address
00c0 21 19 01 ld hl,hex_char_table ;use char table to get high-nybble character
00c3 19 add hl,de ;add offset to start of table
00c4 7e ld a,(hl) ;get char
00c5 e1 pop hl ;get string target address
00c6 77 ld (hl),a ;store first char of string
00c7 23 inc hl ;point to next string target address
00c8 78 ld a,b ;get original byte back from reg b
00c9 e6 0f and 00fh ;mask off high-nybble
00cb 5f ld e,a ;d still has 000h, now de has offset
00cc e5 push hl ;temp store string target address
00cd 21 19 01 ld hl,hex_char_table ;start of table
00d0 19 add hl,de ;add offset
00d1 7e ld a,(hl) ;get char
00d2 e1 pop hl ;get string target address
00d3 77 ld (hl),a ;store second char of string
00d4 23 inc hl ;point to third location
00d5 3e 00 ld a,000h ;zero to terminate string
00d7 77 ld (hl),a ;store the zero
00d8 c9 ret ;done
00d9 ;
00d9 ;Converts a single ASCII hex char to a nybble value
00d9 ;Pass char in reg A. Letter numerals must be upper case.
00d9 ;Return nybble value in low-order reg A with zeros in high-order nybble if no error.
00d9 ;Return 0ffh in reg A if error (char not a valid hex numeral).
00d9 ;Also uses b, c, and hl registers.
00d9 21 19 01 hex_char_to_nybble: ld hl,hex_char_table
00dc 06 0f ld b,00fh ;no. of valid characters in table - 1.
00de 0e 00 ld c,000h ;will be nybble value
00e0 be hex_to_nybble_loop: cp (hl) ;character match here?
00e1 ca ed 00 jp z,hex_to_nybble_ok ;match found, exit
00e4 05 dec b ;no match, check if at end of table
00e5 fa ef 00 jp m,hex_to_nybble_err ;table limit exceded, exit with error
00e8 0c inc c ;still inside table, continue search
00e9 23 inc hl
00ea c3 e0 00 jp hex_to_nybble_loop
00ed 79 hex_to_nybble_ok: ld a,c ;put nybble value in a
00ee c9 ret
00ef 3e ff hex_to_nybble_err: ld a,0ffh ;error value

28

00f1 c9 ret
00f2 ;
00f2 ;Converts a hex character pair to a byte value
00f2 ;Called with location of high-order char in HL
00f2 ;If no error carry flag clear, returns with byte value in register A, and
00f2 ;HL pointing to next mem location after char pair.
00f2 ;If error (non-hex char) carry flag set, HL pointing to invalid char
00f2 7e hex_to_byte: ld a,(hl) ;location of character pair
00f3 e5 push hl ;store hl (hex_char_to_nybble uses it)
00f4 cd d9 00 call hex_char_to_nybble
00f7 e1 pop hl ;returns with nybble value in a reg, or 0ffh if error
00f8 fe ff cp 0ffh ;non-hex character?
00fa ca 17 01 jp z,hex_to_byte_err ;yes, exit with error
00fd cb 27 sla a ;no, move low order nybble to high side
00ff cb 27 sla a
0101 cb 27 sla a
0103 cb 27 sla a
0105 57 ld d,a ;store high-nybble
0106 23 inc hl ;get next character of the pair
0107 7e ld a,(hl)
0108 e5 push hl ;store hl
0109 cd d9 00 call hex_char_to_nybble
010c e1 pop hl
010d fe ff cp 0ffh ;non-hex character?
010f ca 17 01 jp z,hex_to_byte_err ;yes, exit with error
0112 b2 or d ;no, combine with high-nybble
0113 23 inc hl ;point to next memory location after char pair
0114 37 scf
0115 3f ccf ;no-error exit (carry = 0)
0116 c9 ret
0117 37 hex_to_byte_err: scf ;error, carry flag set
0118 c9 ret
0119 .. hex_char_table: defm "0123456789ABCDEF" ;ASCII hex table
0129 ;
0129 ;Subroutine to get a two-byte address from serial input.
0129 ;Returns with address value in HL
0129 ;Uses locations in RAM for buffer and variables
0129 21 08 db address_entry: ld hl,buffer ;location for entered string
012c cd 77 00 call get_line ;returns with address string in buffer
012f 21 08 db ld hl,buffer ;location of stored address entry string

29

0132 cd f2 00 call hex_to_byte ;will get high-order byte first
0135 da 4b 01 jp c, address_entry_error ;if error, jump
0138 32 01 db ld (current_location+1),a ;store high-order byte, little-endian
013b 21 0a db ld hl,buffer+2 ;point to low-order hex char pair
013e cd f2 00 call hex_to_byte ;get low-order byte
0141 da 4b 01 jp c, address_entry_error ;jump if error
0144 32 00 db ld (current_location),a ;store low-order byte in lower memory
0147 2a 00 db ld hl,(current_location) ;put memory address in hl
014a c9 ret
014b 21 f3 03 address_entry_error: ld hl,address_error_msg
014e cd 43 00 call write_string
0151 c3 29 01 jp address_entry
0154 ;
0154 ;Subroutine to get a decimal string, return a word value
0154 ;Calls decimal_string_to_word subroutine
0154 21 08 db decimal_entry: ld hl,buffer
0157 cd 77 00 call get_line ;returns with DE pointing to terminating zero
015a 21 08 db ld hl,buffer
015d cd 6a 01 call decimal_string_to_word
0160 d0 ret nc ;no error, return with word in hl
0161 21 67 04 ld hl,decimal_error_msg ;error, try again
0164 cd 43 00 call write_string
0167 c3 54 01 jp decimal_entry
016a ;
016a ;Subroutine to convert a decimal string to a word value
016a ;Call with address of string in HL, pointer to end of string in DE
016a ;Carry flag set if error (non-decimal char)
016a ;Carry flag clear, word value in HL if no error.
016a 42 decimal_string_to_word: ld b,d
016b 4b ld c,e ;use BC as string pointer
016c 22 00 db ld (current_location),hl ;store addr. of start of buffer in RAM
word variable
016f 21 00 00 ld hl,000h ;starting value zero
0172 22 06 db ld (current_value),hl
0175 21 ba 01 ld hl,decimal_place_value ;pointer to values
0178 22 04 db ld (value_pointer),hl
017b 0b decimal_next_char: dec bc ;next char in string (moving right to left)
017c 2a 00 db ld hl,(current_location) ;check if at end of decimal string
017f 37 scf ;get ready to subtract de from buffer addr.
0180 3f ccf ;set carry to zero (clear)

30

0181 ed 42 sbc hl,bc ;keep going if bc > or = hl (buffer address)
0183 da 8f 01 jp c,decimal_continue ;borrow means bc > hl
0186 ca 8f 01 jp z,decimal_continue ;z means bc = hl
0189 2a 06 db ld hl,(current_value) ;return if de < buffer address (no borrow)
018c 37 scf ;get value back from RAM variable
018d 3f ccf
018e c9 ret ;return with carry clear, value in hl
018f 0a decimal_continue: ld a,(bc) ;next char in string (right to left)
0190 d6 30 sub 030h ;ASCII value of zero char
0192 fa b5 01 jp m,decimal_error ;error if char value less than 030h
0195 fe 0a cp 00ah ;error if byte value > or = 10 decimal
0197 f2 b5 01 jp p,decimal_error ;a reg now has value of decimal numeral
019a 2a 04 db ld hl,(value_pointer) ;get value to add an put in de
019d 5e ld e,(hl) ;little-endian (low byte in low memory)
019e 23 inc hl
019f 56 ld d,(hl)
01a0 23 inc hl ;hl now points to next value
01a1 22 04 db ld (value_pointer),hl
01a4 2a 06 db ld hl,(current_value) ;get back current value
01a7 3d decimal_add: dec a ;add loop to increase total value
01a8 fa af 01 jp m,decimal_add_done ;end of multiplication
01ab 19 add hl,de
01ac c3 a7 01 jp decimal_add
01af 22 06 db decimal_add_done: ld (current_value),hl
01b2 c3 7b 01 jp decimal_next_char
01b5 37 decimal_error: scf
01b6 c9 ret
01b7 c3 a7 01 jp decimal_add
01ba 01 00 0a 00 64 00 e8 03 10 27 decimal_place_value: defw 1,10,100,1000,10000
01c4 ;
01c4 ;Memory dump
01c4 ;Displays a 256-byte block of memory in 16-byte rows.
01c4 ;Called with address of start of block in HL
01c4 22 00 db memory_dump: ld (current_location),hl ;store address of block to be displayed
01c7 3e 00 ld a,000h
01c9 32 03 db ld (byte_count),a ;initialize byte count
01cc 32 02 db ld (line_count),a ;initialize line count
01cf c3 04 02 jp dump_new_line
01d2 2a 00 db dump_next_byte: ld hl,(current_location) ;get byte address from storage,
01d5 7e ld a,(hl) ;get byte to be converted to string

31

01d6 23 inc hl ;increment address and
01d7 22 00 db ld (current_location),hl ;store back
01da 21 08 db ld hl,buffer ;location to store string
01dd cd b3 00 call byte_to_hex_string ;convert
01e0 21 08 db ld hl,buffer ;display string
01e3 cd 43 00 call write_string
01e6 3a 03 db ld a,(byte_count) ;next byte
01e9 3c inc a
01ea ca 34 02 jp z,dump_done ;stop when 256 bytes displayed
01ed 32 03 db ld (byte_count),a ;not finished yet, store
01f0 3a 02 db ld a,(line_count) ;end of line (16 characters)?
01f3 fe 0f cp 00fh ;yes, start new line
01f5 ca 04 02 jp z,dump_new_line
01f8 3c inc a ;no, increment line count
01f9 32 02 db ld (line_count),a
01fc 3e 20 ld a,020h ;print space
01fe cd 37 00 call write_char
0201 c3 d2 01 jp dump_next_byte ;continue
0204 3e 00 dump_new_line: ld a,000h ;reset line count to zero
0206 32 02 db ld (line_count),a
0209 cd ba 02 call write_newline
020c 2a 00 db ld hl,(current_location) ;location of start of line
020f 7c ld a,h ;high byte of address
0210 21 08 db ld hl, buffer
0213 cd b3 00 call byte_to_hex_string ;convert
0216 21 08 db ld hl,buffer
0219 cd 43 00 call write_string ;write high byte
021c 2a 00 db ld hl,(current_location)
021f 7d ld a,l ;low byte of address
0220 21 08 db ld hl, buffer
0223 cd b3 00 call byte_to_hex_string ;convert
0226 21 08 db ld hl,buffer
0229 cd 43 00 call write_string ;write low byte
022c 3e 20 ld a,020h ;space
022e cd 37 00 call write_char
0231 c3 d2 01 jp dump_next_byte ;now write 16 bytes
0234 3e 00 dump_done: ld a,000h
0236 21 08 db ld hl,buffer
0239 77 ld (hl),a ;clear buffer of last string
023a cd ba 02 call write_newline

32

023d c9 ret
023e ;
023e ;Memory load
023e ;Loads RAM memory with bytes entered as hex characters
023e ;Called with address to start loading in HL
023e ;Displays entered data in 16-byte rows.
023e 22 00 db memory_load: ld (current_location),hl
0241 21 1f 04 ld hl,data_entry_msg
0244 cd 43 00 call write_string
0247 c3 97 02 jp load_new_line
024a cd b0 02 load_next_char: call get_char
024d fe 0d cp 00dh ;return?
024f ca ac 02 jp z,load_done ;yes, quit
0252 32 08 db ld (buffer),a
0255 cd b0 02 call get_char
0258 fe 0d cp 00dh ;return?
025a ca ac 02 jp z,load_done ;yes, quit
025d 32 09 db ld (buffer+1),a
0260 21 08 db ld hl,buffer
0263 cd f2 00 call hex_to_byte
0266 da a2 02 jp c,load_data_entry_error ;non-hex character
0269 2a 00 db ld hl,(current_location) ;get byte address from storage,
026c 77 ld (hl),a ;store byte
026d 23 inc hl ;increment address and
026e 22 00 db ld (current_location),hl ;store back
0271 3a 08 db ld a,(buffer)
0274 cd 37 00 call write_char
0277 3a 09 db ld a,(buffer+1)
027a cd 37 00 call write_char
027d 3a 02 db ld a,(line_count) ;end of line (16 characters)?
0280 fe 0f cp 00fh ;yes, start new line
0282 ca 97 02 jp z,load_new_line
0285 3c inc a ;no, increment line count
0286 32 02 db ld (line_count),a
0289 3e 20 ld a,020h ;print space
028b cd 37 00 call write_char
028e c3 4a 02 jp load_next_char ;continue
0291 ;This section is to align the jump to disk_read for the cpm_loader
0291 ;Expects disk_read to be at location 0x0294
0291 00 nop

33

0292 00 nop
0293 00 nop
0294 c3 c5 02 jp disk_read
0297 3e 00 load_new_line: ld a,000h ;reset line count to zero
0299 32 02 db ld (line_count),a
029c cd ba 02 call write_newline
029f c3 4a 02 jp load_next_char ;continue
02a2 cd ba 02 load_data_entry_error: call write_newline
02a5 21 4c 04 ld hl,data_error_msg
02a8 cd 43 00 call write_string
02ab c9 ret
02ac cd ba 02 load_done: call write_newline
02af c9 ret
02b0 ;
02b0 ;Get one ASCII character from the serial port.
02b0 ;Returns with char in A reg. No error checking.
02b0 db 03 get_char: in a,(3) ;get status
02b2 e6 02 and 002h ;check RxRDY bit
02b4 ca b0 02 jp z,get_char ;not ready, loop
02b7 db 02 in a,(2) ;get char
02b9 c9 ret
02ba ;
02ba ;Subroutine to start a new line
02ba 3e 0d write_newline: ld a,00dh ;ASCII carriage return character
02bc cd 37 00 call write_char
02bf 3e 0a ld a,00ah ;new line (line feed) character
02c1 cd 37 00 call write_char
02c4 c9 ret
02c5 ;
02c5 ;Subroutine to read one disk sector (256 bytes)
02c5 ;Address to place data passed in HL
02c5 ;LBA bits 0 to 7 passed in C, bits 8 to 15 passed in B
02c5 ;LBA bits 16 to 23 passed in E
02c5 disk_read:
02c5 db 0f rd_status_loop_1: in a,(0fh) ;check status
02c7 e6 80 and 80h ;check BSY bit
02c9 c2 c5 02 jp nz,rd_status_loop_1 ;loop until not busy
02cc db 0f rd_status_loop_2: in a,(0fh) ;check status
02ce e6 40 and 40h ;check DRDY bit
02d0 ca cc 02 jp z,rd_status_loop_2 ;loop until ready

34

02d3 3e 01 ld a,01h ;number of sectors = 1
02d5 d3 0a out (0ah),a ;sector count register
02d7 79 ld a,c
02d8 d3 0b out (0bh),a ;lba bits 0 - 7
02da 78 ld a,b
02db d3 0c out (0ch),a ;lba bits 8 - 15
02dd 7b ld a,e
02de d3 0d out (0dh),a ;lba bits 16 - 23
02e0 3e e0 ld a,11100000b ;LBA mode, select drive 0
02e2 d3 0e out (0eh),a ;drive/head register
02e4 3e 20 ld a,20h ;Read sector command
02e6 d3 0f out (0fh),a
02e8 db 0f rd_wait_for_DRQ_set: in a,(0fh) ;read status
02ea e6 08 and 08h ;DRQ bit
02ec ca e8 02 jp z,rd_wait_for_DRQ_set ;loop until bit set
02ef db 0f rd_wait_for_BSY_clear: in a,(0fh)
02f1 e6 80 and 80h
02f3 c2 ef 02 jp nz,rd_wait_for_BSY_clear
02f6 db 0f in a,(0fh) ;clear INTRQ
02f8 db 08 read_loop: in a,(08h) ;get data
02fa 77 ld (hl),a
02fb 23 inc hl
02fc db 0f in a,(0fh) ;check status
02fe e6 08 and 08h ;DRQ bit
0300 c2 f8 02 jp nz,read_loop ;loop until cleared
0303 c9 ret
0304 ;
0304 ;Subroutine to write one disk sector (256 bytes)
0304 ;Address of data to write to disk passed in HL
0304 ;LBA bits 0 to 7 passed in C, bits 8 to 15 passed in B
0304 ;LBA bits 16 to 23 passed in E
0304 disk_write:
0304 db 0f wr_status_loop_1: in a,(0fh) ;check status
0306 e6 80 and 80h ;check BSY bit
0308 c2 04 03 jp nz,wr_status_loop_1 ;loop until not busy
030b db 0f wr_status_loop_2: in a,(0fh) ;check status
030d e6 40 and 40h ;check DRDY bit
030f ca 0b 03 jp z,wr_status_loop_2 ;loop until ready
0312 3e 01 ld a,01h ;number of sectors = 1
0314 d3 0a out (0ah),a ;sector count register

35

0316 79 ld a,c
0317 d3 0b out (0bh),a ;lba bits 0 - 7
0319 78 ld a,b
031a d3 0c out (0ch),a ;lba bits 8 - 15
031c 7b ld a,e
031d d3 0d out (0dh),a ;lba bits 16 - 23
031f 3e e0 ld a,11100000b ;LBA mode, select drive 0
0321 d3 0e out (0eh),a ;drive/head register
0323 3e 30 ld a,30h ;Write sector command
0325 d3 0f out (0fh),a
0327 db 0f wr_wait_for_DRQ_set: in a,(0fh) ;read status
0329 e6 08 and 08h ;DRQ bit
032b ca 27 03 jp z,wr_wait_for_DRQ_set ;loop until bit set
032e 7e write_loop: ld a,(hl)
032f d3 08 out (08h),a ;write data
0331 23 inc hl
0332 db 0f in a,(0fh) ;read status
0334 e6 08 and 08h ;check DRQ bit
0336 c2 2e 03 jp nz,write_loop ;write until bit cleared
0339 db 0f wr_wait_for_BSY_clear: in a,(0fh)
033b e6 80 and 80h
033d c2 39 03 jp nz,wr_wait_for_BSY_clear
0340 db 0f in a,(0fh) ;clear INTRQ
0342 c9 ret
0343 ;
0343 ;Strings used in subroutines
0343 .. 00 length_entry_string: defm "Enter length of file to load (decimal): ",0
036c .. 00 dump_entry_string: defm "Enter no. of bytes to dump (decimal): ",0
0393 .. 00 LBA_entry_string: defm "Enter LBA (decimal, 0 to 65535): ",0
03b5 08 1b .. 00 erase_char_string: defm 008h,01bh,"[K",000h ;ANSI sequence for backspace, erase to end
of line.
03ba .. 00 address_entry_msg: defm "Enter 4-digit hex address (use upper-case A through F): ",0
03f3 .. 00 address_error_msg: defm "\r\nError: invalid hex character, try again: ",0
041f .. 00 data_entry_msg: defm "Enter hex bytes, hit return when finished.\r\n",0
044c .. 00 data_error_msg: defm "Error: invalid hex byte.\r\n",0
0467 .. 00 decimal_error_msg: defm "\r\nError: invalid decimal number, try again: ",0
0494 ;
0494 ;Simple monitor program for CPUville Z80 computer with serial interface.
0494 31 ff db monitor_cold_start: ld sp,ROM_monitor_stack
0497 cd 2e 00 call initialize_port

36

049a 21 12 06 ld hl,monitor_message
049d cd 43 00 call write_string
04a0 cd ba 02 monitor_warm_start: call write_newline ;routine program return here to avoid re-
initialization of port
04a3 3e 3e ld a,03eh ;prompt symbol
04a5 cd 37 00 call write_char
04a8 21 08 db ld hl,buffer
04ab cd 77 00 call get_line ;get monitor input string (command)
04ae cd ba 02 call write_newline
04b1 cd b5 04 call parse ;interprets command, returns with address to
jump to in HL
04b4 e9 jp (hl)
04b5 ;
04b5 ;Parses an input line stored in buffer for available commands as described in parse table.
04b5 ;Returns with address of jump to action for the command in HL
04b5 01 be 07 parse: ld bc,parse_table ;bc is pointer to parse_table
04b8 0a parse_start: ld a,(bc) ;get pointer to match string from parse table
04b9 5f ld e,a
04ba 03 inc bc
04bb 0a ld a,(bc)
04bc 57 ld d,a ;de will is pointer to strings for matching
04bd 1a ld a,(de) ;get first char from match string
04be f6 00 or 000h ;zero?
04c0 ca db 04 jp z,parser_exit ;yes, exit no_match
04c3 21 08 db ld hl,buffer ;no, parse input string
04c6 be match_loop: cp (hl) ;compare buffer char with match string char
04c7 c2 d5 04 jp nz,no_match ;no match, go to next match string
04ca f6 00 or 000h ;end of strings (zero)?
04cc ca db 04 jp z,parser_exit ;yes, matching string found
04cf 13 inc de ;match so far, point to next char in match
string
04d0 1a ld a,(de) ;get next character from match string
04d1 23 inc hl ;and point to next char in input string
04d2 c3 c6 04 jp match_loop ;check for match
04d5 03 no_match: inc bc ;skip over jump target to
04d6 03 inc bc
04d7 03 inc bc ;get address of next matching string
04d8 c3 b8 04 jp parse_start
04db 03 parser_exit: inc bc ;skip to address of jump for match
04dc 0a ld a,(bc)

37

04dd 6f ld l,a
04de 03 inc bc
04df 0a ld a,(bc)
04e0 67 ld h,a ;returns with jump address in hl
04e1 c9 ret
04e2 ;
04e2 ;Actions to be taken on match
04e2 ;
04e2 ;Memory dump program
04e2 ;Input 4-digit hexadecimal address
04e2 ;Calls memory_dump subroutine
04e2 21 31 06 dump_jump: ld hl,dump_message ;Display greeting
04e5 cd 43 00 call write_string
04e8 21 ba 03 ld hl,address_entry_msg ;get ready to get address
04eb cd 43 00 call write_string
04ee cd 29 01 call address_entry ;returns with address in HL
04f1 cd ba 02 call write_newline
04f4 cd c4 01 call memory_dump
04f7 c3 a0 04 jp monitor_warm_start
04fa ;
04fa ;Hex loader, displays formatted input
04fa 21 51 06 load_jump: ld hl,load_message ;Display greeting
04fd cd 43 00 call write_string ;get address to load
0500 21 ba 03 ld hl,address_entry_msg ;get ready to get address
0503 cd 43 00 call write_string
0506 cd 29 01 call address_entry
0509 cd ba 02 call write_newline
050c cd 3e 02 call memory_load
050f c3 a0 04 jp monitor_warm_start
0512 ;
0512 ;Jump and run do the same thing: get an address and jump to it.
0512 21 6e 06 run_jump: ld hl,run_message ;Display greeting
0515 cd 43 00 call write_string
0518 21 ba 03 ld hl,address_entry_msg ;get ready to get address
051b cd 43 00 call write_string
051e cd 29 01 call address_entry
0521 e9 jp (hl)
0522 ;
0522 ;Help and ? do the same thing, display the available commands
0522 21 25 06 help_jump: ld hl,help_message

38

0525 cd 43 00 call write_string
0528 01 be 07 ld bc,parse_table ;table with pointers to command strings
052b 0a help_loop: ld a,(bc) ;displays the strings for matching commands,
052c 6f ld l,a ;getting the string addresses from the
052d 03 inc bc ;parse table
052e 0a ld a,(bc) ;pass address of string to hl through a reg
052f 67 ld h,a
0530 7e ld a,(hl) ;hl now points to start of match string
0531 f6 00 or 000h ;exit if no_match string
0533 ca 46 05 jp z,help_done
0536 c5 push bc ;write_char uses b register
0537 3e 20 ld a,020h ;space char
0539 cd 37 00 call write_char
053c c1 pop bc
053d cd 43 00 call write_string ;writes match string
0540 03 inc bc ;pass over jump address in table
0541 03 inc bc
0542 03 inc bc
0543 c3 2b 05 jp help_loop
0546 c3 a0 04 help_done: jp monitor_warm_start
0549 ;
0549 ;Binary file load. Need both address to load and length of file
0549 21 95 06 bload_jump: ld hl,bload_message
054c cd 43 00 call write_string
054f 21 ba 03 ld hl,address_entry_msg
0552 cd 43 00 call write_string
0555 cd 29 01 call address_entry
0558 cd ba 02 call write_newline
055b e5 push hl
055c 21 43 03 ld hl,length_entry_string
055f cd 43 00 call write_string
0562 cd 54 01 call decimal_entry
0565 44 ld b,h
0566 4d ld c,l
0567 21 b8 06 ld hl,bload_ready_message
056a cd 43 00 call write_string
056d e1 pop hl
056e cd 53 00 call bload
0571 c3 a0 04 jp monitor_warm_start
0574 ;

39

0574 ;Binary memory dump. Need address of start of dump and no. bytes
0574 21 dc 06 bdump_jump: ld hl,bdump_message
0577 cd 43 00 call write_string
057a 21 ba 03 ld hl,address_entry_msg
057d cd 43 00 call write_string
0580 cd 29 01 call address_entry
0583 cd ba 02 call write_newline
0586 e5 push hl
0587 21 6c 03 ld hl,dump_entry_string
058a cd 43 00 call write_string
058d cd 54 01 call decimal_entry
0590 44 ld b,h
0591 4d ld c,l
0592 21 0c 07 ld hl,bdump_ready_message
0595 cd 43 00 call write_string
0598 cd b0 02 call get_char
059b e1 pop hl
059c cd 65 00 call bdump
059f c3 a0 04 jp monitor_warm_start
05a2 ;Disk read. Need memory address to place data, LBA of sector to read
05a2 21 33 07 diskrd_jump: ld hl,diskrd_message
05a5 cd 43 00 call write_string
05a8 21 ba 03 ld hl,address_entry_msg
05ab cd 43 00 call write_string
05ae cd 29 01 call address_entry
05b1 cd ba 02 call write_newline
05b4 e5 push hl
05b5 21 93 03 ld hl,LBA_entry_string
05b8 cd 43 00 call write_string
05bb cd 54 01 call decimal_entry
05be 44 ld b,h
05bf 4d ld c,l
05c0 1e 00 ld e,00h
05c2 e1 pop hl
05c3 cd c5 02 call disk_read
05c6 c3 a0 04 jp monitor_warm_start
05c9 21 5b 07 diskwr_jump: ld hl,diskwr_message
05cc cd 43 00 call write_string
05cf 21 ba 03 ld hl,address_entry_msg
05d2 cd 43 00 call write_string

40

05d5 cd 29 01 call address_entry
05d8 cd ba 02 call write_newline
05db e5 push hl
05dc 21 93 03 ld hl,LBA_entry_string
05df cd 43 00 call write_string
05e2 cd 54 01 call decimal_entry
05e5 44 ld b,h
05e6 4d ld c,l
05e7 1e 00 ld e,00h
05e9 e1 pop hl
05ea cd 04 03 call disk_write
05ed c3 a0 04 jp monitor_warm_start
05f0 21 00 08 cpm_jump: ld hl,0800h
05f3 01 00 00 ld bc,0000h
05f6 1e 00 ld e,00h
05f8 cd c5 02 call disk_read
05fb c3 00 08 jp 0800h
05fe ;Prints message for no match to entered command
05fe 21 1d 06 no_match_jump: ld hl,no_match_message
0601 cd 43 00 call write_string
0604 21 08 db ld hl, buffer
0607 cd 43 00 call write_string
060a c3 a0 04 jp monitor_warm_start
060d ;
060d ;Monitor data structures:
060d ;
060d .. 00 monitor_message: defm "\r\nROM ver. 15\r\n",0
061d .. 00 no_match_message: defm "? ",0
0620 .. 00 help_message: defm "Commands:\r\n",0
062c .. 00 dump_message: defm "Displays 256 bytes of memory.\r\n",0
064c .. 00 load_message: defm "Enter hex bytes in memory.\r\n",0
0669 .. 00 run_message: defm "Will run program at address entered.\r\n",0
0690 .. 00 bload_message: defm "Loads a binary file into memory.\r\n",0
06b3 .. 00 bload_ready_message: defm "\n\rReady to receive, start transfer.",0
06d7 .. 00 bdump_message: defm "Dumps binary data from memory to serial port.\r\n",0
0707 .. 00 bdump_ready_message: defm "\n\rReady to send, hit any key to start.",0
072e .. 00 diskrd_message: defm "Reads one sector from disk to memory.\r\n",0
0756 .. 00 diskwr_message: defm "Writes one sector from memory to disk.\r\n",0
077f ;Strings for matching:
077f .. 00 dump_string: defm "dump",0

41

0784 .. 00 load_string: defm "load",0
0789 .. 00 jump_string: defm "jump",0
078e .. 00 run_string: defm "run",0
0792 .. 00 question_string: defm "?",0
0794 .. 00 help_string: defm "help",0
0799 .. 00 bload_string: defm "bload",0
079f .. 00 bdump_string: defm "bdump",0
07a5 .. 00 diskrd_string: defm "diskrd",0
07ac .. 00 diskwr_string: defm "diskwr",0
07b3 .. 00 cpm_string: defm "cpm",0
07b7 00 00 no_match_string: defm 0,0
07b9 ;Table for matching strings to jumps
07b9 7f 07 e2 04 84 07 fa 04 parse_table: defw dump_string,dump_jump,load_string,load_jump
07c1 89 07 12 05 8e 07 12 05 defw jump_string,run_jump,run_string,run_jump
07c9 92 07 22 05 94 07 22 05 defw question_string,help_jump,help_string,help_jump
07d1 99 07 49 05 9f 07 74 05 defw bload_string,bload_jump,bdump_string,bdump_jump
07d9 a5 07 a2 05 ac 07 c9 05 defw diskrd_string,diskrd_jump,diskwr_string,diskwr_jump
07e1 b3 07 f0 05 defw cpm_string,cpm_jump
07e5 b7 07 fe 05 defw no_match_string,no_match_jump
07e9
End of file 2K_ROM_15.asm
07e9

42

	Introduction
	Building the Single-board Bus Display
	Soldering tips
	Component placement
	Testing the bus display board

	Using the bus display
	The displays
	Using the slow clock
	Switching clocks while running
	Using the single-step clock
	Using the v.15 ROM with the bus display

	Schematics and explanations
	System connector
	Clocks and reset
	Display buffer and LEDs
	Port address decoder
	Input ports
	Output ports

	Single-board bus display parts organizer
	Single-board bus display parts list
	v.15 ROM listing

